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In this paper we study the existing observation in literature about synchronization of a large number of
coupled maps with random nonlocal connectivity@Chate and Manneville, Chaos2, 307 ~1992!#. These con-
nectivities which lack any spatial significance can be realized in neural nets and electrical circuits. It is quite
interesting and of practical importance to note that a huge number of maps can be synchronized with this
connectivity. We show that this synchronization stems from the fact that the connectivity matrix has a finite
gap in the eigenvalue spectrum in the macroscopic limit. We give a quantitative explanation for the gap. We
compare the analytic results with the ones quoted in the above reference. We also study the departures from
this highly collective behavior in the low connectivity limit and show that the behavior is almost statistical for
very low connectivity.

PACS number~s!: 05.45.1b, 02.50.1s, 05.90.1m

I. INTRODUCTION

Of late, there has been considerable attention paid to the
study of coupled map lattices~CML! in various contexts.
They have been used as a computationally simple and ana-
lytically tractable model for spatiotemporal systems@1#. The
studies on CML’s have been either in one and two dimen-
sional lattices or with global coupling, in which case there is
no notion of lattice geometry@2#. The higher dimensional
connectivities@3# or hierarchial connectivities@4,5# are stud-
ied very little.

One more system that has been studied is the CML with
random nonlocal couplings@6#. The motivation is twofold.
First, this is an effectively high dimensional system. The
phenomenology in CML in higher dimensions has not been
studied much, and needs further investigation. Second, there
are systems like neural nets in which the local connections
do not have any spatial significance. There also exist systems
like electrical circuits@7# in which connectivity is at one’s
will and such a coupling can be easily realized. Thus the
studies of different connectivities and their effects will be
useful in designing well controlled systems. In this system of
random nonlocal connectivity Chate and Manneville have
presented preliminary results@6# which show that synchroni-
zation of a large number of oscillators is easily achieved with
this connectivity.

Synchronization of oscillators in spatially extended sys-
tems such as coupled oscillators is important from various
points of view. By achieving synchronization, one can try to
build huge but more controllable and better behaved systems
which are effectively low dimensional@7#. Sometimes, syn-
chronization may serve other purposes, such as sending
codes that are difficult to break@8#. In various contexts, this
problem has been subjected to several studies in the past few
years@9#. We would like to show that the phenomenon of
synchronization can be generally understood by investigating
the eigenvalue spectrum of the connectivity matrix and can

help us to understand the existing observations. In this paper,
we will explicitly illustrate how one can separate the mode
leading to spatial homogeneity from the rest. We will show
that there exists a finite gap between the growth rates, the
spatially homogeneous mode, and the rest in the model stud-
ied in Ref. @6#. We will also study the departures from this
behavior for lower connectivities.

For the linear stability analysis of the synchronized state,
we will study the eigenvalue spectrum of the connectivity
matrix with random nonlocal connectivity. We will also
study the eigenspectrum of the product of such matrices. We
would note that a similar model of random connectivity ma-
trix of sizeN3N with k nonzero elements in each row has
been investigated by Cook and Derrida in Ref.@10# in con-
nection with the random energy model, the generalized ran-
dom energy model, and directed polymers in random media.
They have obtained exact analytic results for products of
such matrices in the case where the matrices are sparse and
the distribution function of nonzero elements is not ad func-
tion. However, in the model studied by Chate and Mannev-
ille @6#, all connections have the same weight, i.e., the distri-
bution function of nonzero elementsis a d function.

II. RANDOMLY COUPLED CML AND THE LINEAR
STABILITY ANALYSIS

The model is the following: there areN sites. Each site is
coupled tok sites chosen randomly. The connection is not
necessarily symmetric. A site can be connected to some other
site more than once and can be connected to itself. The
strength of coupling is proportional to the number of times
the two sites are connected.

Let us define the ‘‘neighborhood’’Vi for each sitei in the
above model. There arek sites~which sitei is connected to!
in Vi . These k sites are chosen randomly. Thus
Vi5$c1

i ,c2
i , . . . ,ck

i % where k randomly chosen sites
cl
i ,l51, . . . ,k,i51, . . . ,N, to which the sitei is connected,
form the neighborhood of sitei . As mentioned above, con-
nections to all sites are equiprobable and the possibility that
site i can be connected to some sitej more than once is not
ruled out. Now we define the interaction matrixI for the
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above connectivity. The matrix elementI i , j is equal to the
number of times sitei is connected to sitej . If site i is not
connected to sitej , obviously the matrix elementI i , j has a
zero value. Thus we define

I i , j5(
l51

k

d j ,c
l
i. ~1!

The value of the elementI i , j of the interaction matrix is the
number of times sitei is connected to sitej , i.e., the number
of times j occurs inVi . Thus it could have values from 0 to
k. @In the infinite lattice limit (k,,N), the possibility that
two sites will be connected more than once is negligible.
Thus the entries are 0 or 1. However, the summation in the
above expression is introduced to take care of the possibility
that the two sites may be connected more than once, i.e.,
Vi containsj more than once.# We also note that in the above
model, the connectivity matrixI is not symmetric, i.e.,I i , j
ÞI j ,i in general.

For convenience, let us denote thei th row of matrix I by
I i . The onlyk elements with nonzero value inI i will be at
sitescl

i ’s, l51, . . . ,k.
Now we define a spatiotemporal system as follows. Let us

associate a real numberxi(t) with the state of sitei at time
t. The evolution rule for the above dynamical system
~coupled map system in the above work! is defined by

xi~ t11!5k21(
j
I i , j f „xj~ t !…, ~2!

where i51, . . . ,N. The function f :I→I is some function
from a real intervalI onto itself.

Using Eq.~2! and the fact that( j I i , j5k for all i , it is easy
to verify that if one starts with the pattern in which all the
points are in a coherent state, i.e.,x1(t)5x2(t)
5•••5xN(t)5x(t), they remain in the coherent state for all
timest8.t . The connectivity is such that the time evolution
does not destroy coherence and the evolution is like the evo-
lution of a single map.

Thus a synchronized state is indeed an allowed pattern. In
order that this ‘‘allowed’’ pattern is indeed realized in prac-
tice for at least some set of initial conditions which span a
nonzero volume in the allowed phase space, this pattern
should be stable against infinitesimal perturbation. In@4# the
generic conditions for synchronized chaotic evolution in a
macroscopic system are discussed. In this work we analyze
the linear stability of a synchronized state on the lines of
arguments in Ref.@4#.

For the linear stability analysis the eigenvalues and eigen-
vectors of the matrix J5 limt→`J(t), where
J(t)5Jt•••J2J1 , are ~asymptotically! relevant. The Jaco-
bian matrix at time t, i.e., Jt is given by
Jt( i , j )5k21I ( i , j ) f 8„xj (t)… and xj (t)5x(t) for all j . Thus
the Jacobian matrix is J5 limt→`@ I /
k] t f 8(xt) f 8(xt21)••• f 8(x1). The eigenvalues ofJ are
limt→`l i

t , wherel i5v il/k wherev i ,i51,2, . . . ,N are the
eigenvalues of the interaction matrix I and
l5 limt→`u f 8„x(t)…f 8„x(t21)…••• f 8„x(1)…u1/t. The rel-

evant eigenvectors are those ofI , and the problem reduces to
a study of the eigenvalues and eigenvectors of the interaction
matrix I.

The fact that coherent patterns are allowed implies that a
right eigenvector of the interaction matrix is
e15@1,1, . . . ,1#. This is a characteristic of row stochastic
matrices, and corresponds to the eigenvaluel for the product
of theJ’s. From Greshgorin’s theorem@11# this is the largest
eigenvalue. Consider a small deviation, D0
5@d1 ,d2 , . . . ,dN#, from the homogeneous pattern@x(0),
x~0!, . . . ,x~0!#. We can reexpressD0 in terms of its compo-
nent alonge1 and the rest asD8.

D05a1e11D8. ~3!

We will explicitly show that in this particular case it is pos-
sible to decompose the matrixI in a component alonge1 and
along theN21 dimensional matrixS in the subspace or-
thogonal toe1 . It is easy to check that using a similar tech-
nique it is possible to do the same for any row stochastic
matrix. If the only eigenvalue with modulus greater than
unity is l15l and the matrixS which is a projection of
matrix I in the N21 dimensional subspace orthogonal to
e1 has all eigenvalues less than unity, then for large enough
t we can write

D t.a1l1
t e1 . ~4!

The perturbation grows along the direction
e15@1,1, . . . ,1# and any random deviation will eventually
be homogenized. Thus the necessary condition for the syn-
chronized pattern to exist~and evolve chaotically in time! is
thatl1 is the only eigenvalue greater than unity and all oth-
ers in a subspace orthogonal toe1 are less than unity in
magnitude. Since we achieve this decomposition by a simple
similarity transformation, one can put the above statement as
a linearly stable coherent pattern—in the infinite lattice
limit—which therefore requires a finitegap in the eigenvalue
spectrum of the interaction matrix.

Now the question is whether the interaction matrixI men-
tioned above has a finite gap in the spectrum.

One more interesting observation in Ref.@6# is the follow-
ing. They select a different interaction matrix each time. The
number of connections that each sitei has is stillk. How-
ever, the sites to which it is connected changes every time.
~The neighborhood of sitei , Vi , still has k elements but
elements keep on changing in time.! Thus the interaction
matrix I depends on time. It is easy to see that for this case
the condition is that the product of the interaction matrices
should have a gap. In other words the effective interaction
matrix I 8, whereI 8t5I tI t21•••I 1 , has a gap in its spectrum
in the asymptotic limit.

We will show that the interaction matrix or the effective
interaction matrix mentioned above indeed has a gap. The
largest eigenvalue isk. The magnitude of the second largest
eigenvalue is of the orderAk in the infinite lattice limit.

First let us give a qualitative explanation. Let us take an
example of interconnectivity matrix withN56 andk52. Let
the matrixI be
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I5S 0 1 0 0 1 0

1 0 0 0 0 1

0 1 0 1 0 0

0 0 0 1 1 0

0 1 0 0 0 1

1 0 0 1 0 0

D . ~5!

ThusV15$c1
1 ,c2

1%5$2,5%,V25$1,6%, . . . andV65$1,4%.
It is clear thate15@1,1, . . . ,1# is a right eigenvector with

eigenvaluek52. Let the next eigenvector in the space or-
thogonal toe1 be e25@u1 ,u2 . . . ,uN#. Orthogonality with
e1 would imply that ( i51

N ui50. Since the connectivity is
nonlocal, the ‘‘correlation length’’ does not have a meaning.
Correlations, if any, are expected to span the entire lattice.
Thus the correlations can only be expected in the zeroth Fou-
rier component which is the vector@1,1,1•••1#. However, in
the space perpendicular to this vector we expect the compo-
nents to bed correlated. Thus a mean value ofui is zero and
e2 is a vector which has components which are random ele-
ments with zero mean. If this is an eigenvector with eigen-
valuel2 , i.e., Ie25l2e2 , the equation implies that the sum
of k of the random elements~on the left hand side! scales
with the element itself asl2 . However, by the law of large
numbers, one would expect the largest scaling factor of the
sum of k random numbers with itself to be of the order of
Ak. Thus one could guess thatl2 should be at most of the
orderAk. ~This is something like displacement from the ori-

gin after t time steps in symmetric random walk in 1D,
which is like sum of t random numbers with zero mean
scales asAt.) Thus the spectrum has a gap fork.1.

Now let us try to give a formal proof for the above state-
ment. We will carry out a similarity transformation of the
above matrix to separate its component along the eigenvector
e1 and a matrix in anN21 dimensional space orthogonal to
it.

The Fourier matrix of order N is given by
FN(m,n)5v (m21)(n21) while its inverseFN

21 is given by
FN

21(m,n)5v2(m21)(n21), wherev5e2p i /N,i5A21. For
example, the Fourier matrix of order 6 will be

F65
1

AN S 1 1 1 1 1 1

1 v v2 v3 v4 v5

1 v2 v4 v6 v8 v10

1 v3 v6 v9 v12 v15

1 v4 v8 v12 v16 v20

1 v5 v10 v15 v20 v25

D ~6!

andF6
215F6* .

For convenience let us denote thei th row ~column! of F
as f i51/AN(1,v ( i21),v2(i21), . . . ,v (N21)(i21)) and thei th
row ~or column! of F21 as f i

2151/AN(1,v2( i21),
v22(i21), . . . ,v2(N21)(i21)).

The transformed matrix isK5FN
21IFN given by

K5
1

N 1
kN N~ I 1–f 2 ,I 2–f 2 , . . . ,I N–f 2!–f 1

21
••• N~ I 1–f N ,I 2–f N , . . . ,I N–f N!–f 1

21

0 N~ I 1–f 2 ,I 2–f 2 , . . . ,I N–f 2!–f 2
22

••• N~ I 1–f N ,I 2–f N , . . . ,I N–f N!–f 2
21

0 N~ I 1–f 2 ,I 2–f 2 , . . . ,I N–f 2!–f 3
21

••• N~ I 1–f N ,I 2–f N , . . . ,I N–f N!–f 3
21

0 ••• •••

0 ••• •••

0 N~ I 1–f 2 ,I 2–f 2 , . . . ,I N–f 2!–f N
21

••• N~ I 1–f N ,I 2–f N , . . . ,I N.f N!.f N
21

2 ~7!

~Though this separation between largest eigenvalue and its minor has been explicitly carried out in this case, it is easy to check
that it is possible for any row stochastic matrix.! In the particular case above for whichk52, N56, the above matrix can be
written as

K5
1

NS 2N ~vc8~1,1!1vc8~1,2!!1~vc8~2,1!1vc8~2,2!!•••1~vc8~6,1!1vc8~6,2!! •••

0 ~vc8~1,1!1vc8~1,2!!1v21~vc8~2,1!1vc8~2,2!!•••1v25~vc8~6,1!1vc8~6,2!! •••

0 ~vc8~1,1!1vc8~1,2!!1v22~vc8~2,1!1vc8~2,2!!•••1v210~vc8~6,1!1vc8~6,2!! •••

0 ••• •••

0 ••• •••

0 ~vc8~1,1!1vc8~1,2!!1v25~vc8~2,1!1vc8~2,2!!•••1v225~v5c8~6,1!1vc8~6,2!! •••

D ~8!
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where c8( i , j )5cj
i21,i51,2, . . . ,N, j51, . . . ,k. A typical

matrix element K( i , j ) in this matrix is
K( i , j )51/N(m51

N (( l51
k v ( j21)c8(m,l ))v2(m21)(i21). Thus

K( i ,1)51/N(m51
N kv2(m21)(i21), and is 0 foriÞ1 since the

sum of roots of unity is zero except for unity itself.
The above matrix can also be written as

K5S k u 2 2 2 2 2

2 u 2 2 2 2 2

0 u

0 u

A u S

0 u

D , ~9!

whereS is anN21 dimensional matrix in the subspace or-
thogonal toe1 .

For convenience, we define matricesS8, S9, andS98 by

S5
1

N
S85AkS95

Ak
AN

S-. ~10!

The eigenvalues of the transformed matrix arek and the
eigenvalues of the minor of theK1,1, i.e., S. In S8 each
element is the sum ofNk randomly chosen roots of unity.
Now let us rewrite the modulus of one individual element of
SasuSi , j u51/NuSi , j8 u5AkuSi , j9 u ~by the above definition!. One
can write Si , j as Si , j5(Ak/AN)(1/ANk)(Si , j8 )
5(Ak/AN)S98( i , j ). A typical element in S98 is
S888( i , j )5(Nk)21/2( l51

Nk exp(ul), where u l are randomly
chosen. The variance of the modulus of this typical element

^uS98~ i , j !u2&5~^$@( l51
Nk cos~u l # !/ANk%2&

1^$@( l51
Nk sin~u l !#/ANk%2&.

The law of large numbers implies that both the first and
second terms have an expectation value 1/2. Since the sec-
ond moment is defined for the terms, the central limit theo-
rem asserts that the distribution will be Gaussian.~Rigor-
ously speaking, distribution is approximately Gaussian and
the approximation becomes more and more exact for large
values ofNk.) Thus the modulus of the sum is a quantity
which has a Gaussian distribution with variance 1. Exploit-
ing the fact that different Fourier components of the same
random vector are independent of each other and that com-
ponents of different random vectors form a random vector
@see Eq.~7!#, one can conclude that the matrix elements are
independent of each other. In brief,S98 is anN21 dimen-
sional matrix with independent identically distributed vari-
ables, modulus of whose elements has a Gaussian distribu-
tion with variance unity. Thus the matrixS98/AN5S9 has
elements such that for large N, N^uSi , j9 u2&51,
i51, . . . ,N21, j51, . . . ,N21. Now S9 is an asymmetric
complex random matrix whose elements are i.i.d. and such
that their variance goes asN^uSi , j9 u2&51. We know that
@12,13# eigenvalues of such matrices lie in the unit circle in
the complex plane. Thus the eigenvalues ofS should lie in a
circle of radiusAk in the infinite lattice limit.

We have numerically confirmed the above statement by
determining the second largest eigenvalue in large matrices.
We operate a vector which is orthogonal to the largest eigen-
vector ~and orthogonalize it repeatedly! and determine the
magnitude of the second largest eigenvalue. Figure 1 shows
the eigenvalue which is the second largest in magnitude for
different values ofk. The points are obtained by averaging
over 10–15 different configurations forN51000 and the
fluctuations are of the size of the error bars. It is very clear
that within numerical accuracy the second largest eigenvalue
is indeedAk. Figure 2 shows the eigenvalues of 10 configu-
rations of matrices withN5100 superposed over each other
for k516. It is very clear that while one of the eigenvalues is

FIG. 1. This figure shows an eigenvalue of the interaction ma-
trix which is the second largest in magnitude as a function ofk. The
values closely follow the curveAk. The points are obtained by
averaging over 10–15 configurations and fluctuations are of the size
of error bars.

FIG. 2. This figure shows the eigenvalues of 10 configurations
of matrices withN5100 superposed over each other fork516.
While one of the eigenvalues is 16, the rest are almost in the circle
of radius 4.
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16, the rest are in a circle of radius 4.
Now let us turn to the product of such matrices. Here we

do not have the exact proof. We argue as follows. Each of
the matrices can be Fourier transformed. Since the Fourier
matrix depends only on dimensionality of the matrix and not
the elements@see eq.~6!#, the product of these matrices has
the same eigenvalues as the product of transformed matrices.
Let us consider the matrix

I 8t5I t I t21•••I 1[FN
21I t I t21•••I 1FN

5FN
21I t FNFN

21I t21FN•••FN
21I 1FN

5Kt Kt21•••K1 , ~11!

whereKt5FN
21I tFN and has the same form as Eq.~9!. This

product will have the same structure and one of the eigen-
values of the product oft. Such matrices will clearly be
kt. Let us denote the minor of the elementKt(1,1) bySt .
The minor of the first element in the first row of this matrix
will be ) t51

t St . For clarity, let us write the above matrix as

I t[S kt u 22222 2222 2 2 2

222 u 22222 2222 2 2 2

0 u

0 u

A u St•••S1

0 u

D .

~12!

The eigenvalues of the transformed matrix are (kN)t and the
eigenvalues of) t51

t St . Each of these matricesSt has entries
which are independent identically distributed random vari-
ables. In the case of real matrices it has been proven that
under certain conditions the noncommutative nature of the
matrices can be ignored@12,14#. Thus, using the law of large
numbers the largest eigenvalue of the product converges to
lt, wherel is the expectation value of the largest eigenvalue
of an individual matrix. The necessary condition for this
theorem holds for complex matrices also@15#. The condition
is that the distribution ofuuSt(z/uuzuu)uu is independent ofz
Þ0 in C N. Cohen and Newman@14,12# have also given a
sufficient condition for the above. In particular, it holds for
the product of random matrices where the elements are
jointly Gaussian variables and the columns are independent
and identically distributed. If we assume the sufficient con-
dition to be true for Gaussiancomplexrandom matrices@16#,
one can claim that the largest Lyapunov exponent of the
product will asymptotically converge tokt/2. Thus the effec-
tive interaction matrixI 8 has the second largest Lyapunov
exponent with magnitudeAk. The departures of the finite
time Lyapunov exponent from this value will be less and less
in the infinite time limit. Now let us address the question of
whether the above analysis explains the results obtained by
Chate and Manneville@6#.

The answer is in the affirmative. The largest eigenvalue in
the above evolution isl, which is the same as the one in the
single map evolution. The second largest islAk/k5l/Ak.

The maps explored in the above paper are logistic maps for
which the largest value ofl is 2.

Thus fork.4 the maps must get synchronized~Fig. 3 of
Ref. @6#! if the second largest eigenvalue is less than or equal
to the expected value. However, for a given realization there
could be fluctuations and thus one may not observe synchro-
nization and might have to go to slightly higher values of
k. Thus if one wants the convergence for all realizations, the
value could be a little higher in this case.

However, in the case in which the interaction matrix is
newly selected each time, one observes thatk54 is indeed
the transition point. This clearly reflects the fact that in the
case of the product of matrices, the fluctuations away from
the expected value are quickly averaged out.

Now let us turn to the question of how the time needed
from synchronization depends onN and k. We denote the
average time needed to synchronize a system ofN maps with
each site connected tok sites asts(N,k). Figure 3 shows the
dependence of the averge time needed for synchronization
ts(N,k) as a function ofk for N51000. The average time
needed for synchronizingN maps decreases withk and it
saturates for large values ofk. If one investigates variation in
ts(N,k) as a function ofN for given k, one can see that for
a large enough value ofN the time required is virtually un-
changed. Figure 4 shows the dependence of this average time
as a function ofN for k59. It is interesting that the time
required for synchronization does not increase for largeN.
This may have to do with the fact that the connectivity is
‘‘locally treelike’’ and thus the information at any point
spreads quickly all over the lattice. The higher average time
at smallerN may have to do with higher fluctuations in the
second largest eigenvalue for lower values ofN.

III. TRANSITION FROM COLLECTIVE BEHAVIOR TO
STATISTICAL BEHAVIOR

Now we consider departures from the synchronized state.
If the function is not highly chaotic, i.e.,l is small, the
synchronization is achieved fairly quickly. Thus in order to
understand the departures, we should consider a highly cha-
otic function, i.e. one with a large Lyapunov exponent. Let
the functionf (x) in Eq. ~2! be a thrice iterated logistic map,

FIG. 3. Dependence of average time needed for synchronization
ts(N,k) as a function of connectivityk for N51000.
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i.e., f (x)5g3(x) whereg(x)54x(12x). The exponentl
for a single mapg(x) is 2 and that forf (x) is 8. This func-
tion f being the third iterate of the logistic map is an eighth
order polynomial with four maxima and four minima. For
l58, one would expect complete synchronization of a large
number of oscillators fork.64, though the onset will differ
a little for a given configuration. As in@6#, let us define the
collective variableh(t)5( i51

N xi(t). In Fig. 5 we plot the
return map ofh(t) for various connectivities. In the case of
an exact synchronization, all the variablesxi(t) are identical
and the whole array behaves like a single map. Thus one
expects the return map to be the functionf itself in this case.
This expectation is fulfilled even if the maps are not exactly
synchronized and the connectivityk is below the threshold
required for synchronization. As the connectivity is reduced
further, there are further departures of this return map from
the functionf , and for very low connectivities one does not
see any coherence. In Fig. 5, we plot the return map of

h(t) for various values of connectivity for a typical realiza-
tion, namely fork54, k515, k533, andk555. While for
k555 the return map closely follows the mapf (x) ~though a
synchronized state is not reached!, it departs from this be-
havior for lower connectivities. Fork54 we do not see any
coherence emerging between the variables and the return
map is a filled ellipse whose size decreases rapidly withN.
This is the behavior that one would expect ifxi(t)’s were
i.i.d. random variables. This is further confirmed by checking
the variance ofh(t) for different values ofN for k54. Fig-
ure 6 shows the plot of variance ofh(t) for various values of
N and it is clear that the variance decays as 1/N. It is not
unexpected that for small connectivities the variables will
indeed be uncorrelated. For example, fork51, the evolution
is as if N independent maps are evolving but are labeled
differently each time. Fork.1, the same explanation will
not be exactly applicable. However, one seems to have a
statistical behavior for small connectivities and a highly col-
lective synchronized evolution for larger values of connec-
tivity.

IV. DISCUSSION

Our result on synchronization is indeed significant from
an experimental point of view. There have been attempts to
have macroscopic synchronized chaos in one dimension with
asymmetric coupling and open boundary conditions. The
problem with this type of connectivity is that due to convec-
tive instabilities one cannot have synchronization in systems
with really large sizes@17#. However, since in this model
there is no preferred direction in which instabilities can
‘‘flow and grow,’’ it does not have the above problem. Auer-
bach@18# suggested system size dependent controls to over-
come this problem while Gade, Cerdeira, and Ramaswamy
suggested@4# the tree type connectivity so that the problem
is less pronounced. However, it is interesting to note that
random connectivities can achieve the same thing. Since one
can indeed achieve asymmetric connectivities in systems like
electrical circuits, it could be useful for those who want to
build huge but better controlled and effectively low dimen-
sional systems.

FIG. 4. Dependence of average time needed for synchronization
ts(N,k) as a function of number of sitesN for k59.

FIG. 5. The return plot of the collective variableh(t) for
k54,15,33, and 55 for a typical configuration. It is clear that while
for k54 this variable behaves like a sum of i.i.d. random variables,
it exhibits highly collective motion for larger values ofk.

FIG. 6. The mean square deviation of the mean field as a func-
tion of total number of sites for CML withk54. The map
f (x)5g3(x), whereg(x)54x(12x).
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One more advantage with this kind of connectivity over
globally coupled lattices or any other type of regular connec-
tivity is the lack of symmetries in the model. In the presence
of symmetries, one can have many equivalent attractors
present simultaneously. All these equivalent attractors will
be equally attracting and have their own basin of attraction.
Thus the basin of attraction of a synchronized state, even in
the case where it exists and is stable, could be very small.
For example, in Josephson junction arrays~JJA’s!, a similar
phenomenon of attractor crowding is reported where a small
change in initial conditions makes one jump from one attrac-
tor to other @19#. The number of competing attractors ex-
plodes even for a small number of oscillators. This is in
contrast with the present model where almost all initial con-
ditions lead to a synchronized state@20#.

We have also shown that for lower connectivities, the
collective motion slowly disappears and for very low con-
nectivities statistical behavior appears in this model. We note
that for this type of coupling, the array looks like a tree with
k branches locally. We note that in the case of coupled maps
on trees@4#, the model indeed resembles a similar model in
statistical mechanics@21# and displays a mean-field type be-
havior. We would like to mention that such behavior~or

rather its absence! has been widely investigated in globally
coupled maps~which is an analog of the mean field model in
statistical mechanics! and it is claimed that the reason for an
apparent lack of nonstatistical behavior emerging in this
model is due to nonstationary evolution of the model@22#. It
is interesting that this behavior is observed with finite non-
local couplings.

In brief, we have tried to explain the existing observations
in the literature about the models with random nonlocal con-
nectivity. We have shown that the interaction matrix has a
gap in the eigenvalue spectrum which is of the order of the
number of connections. We have pointed out the practical
importance of this observation. We have also studied the
departures from this collective behavior. We observe that the
maps become highly uncorrelated and their sum shows a
statistical behavior in the low connectivity limit.
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